Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 105: 106870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579570

RESUMO

The obtained seeds from fruit processing are considered by-products containing proteins that could be utilized as ingredients in food manufacturing. However, in the specific case of soursop seeds, their usage for the preparation of protein isolates is limited. In this investigation a protein isolate from soursop seeds (SSPI) was obtained by alkaline extraction and isoelectric precipitation methods. The SSPI was sonicated at 200, 400 and 600 W during 15 and 30 min and its effect on the physicochemical, functional, biochemical, and structural properties was evaluated. Ultrasound increased (p < 0.05) up to 5 % protein content, 261 % protein solubility, 60.7 % foaming capacity, 30.2 % foaming stability, 86 % emulsifying activity index, 4.1 % emulsifying stability index, 85.4 % in vitro protein digestibility, 423.4 % albumin content, 83 % total sulfhydryl content, 316 % free sulfhydryl content, 236 % α-helix, 46 % ß-sheet, and 43 % ß-turn of SSPI, in comparison with the control treatment without ultrasound. Furthermore, ultrasound decreased (p < 0.05) up to 50 % particle size, 37 % molecular flexibility, 68 % surface hydrophobicity, 41 % intrinsic florescence spectrum, and 60 % random coil content. Scanning electron microscopy analysis revealed smooth structures of the SSPI with molecular weights ranging from 12 kDa to 65 kDa. The increase of albumins content in the SSPI by ultrasound was highly correlated (r = 0.962; p < 0.01) with the protein solubility. Improving the physicochemical, functional, biochemical and structural properties of SSPI by ultrasound could contribute to its utilization as ingredient in food industry.


Assuntos
Annona , Proteínas de Plantas , Sementes , Solubilidade , Sementes/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Annona/química , Ondas Ultrassônicas , Fenômenos Químicos , Sonicação
2.
Ultrason Sonochem ; 84: 105976, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35272239

RESUMO

In this study, the influence of ultrasound on the physicochemical and functional properties of guamuchil seed protein isolate (GSPI) was investigated. The GSPI was prepared by alkaline extraction and isoelectric precipitation method followed by treating with ethanol (95%), from defatted guamuchil seed flour. GSPI suspensions (10%) were sonicated with a probe (20 kHz) at 3 power levels (200 W, 400 W, 600 W) for 15 and 30 min, in addition, to control treatment without ultrasound. Moisture content, water activity, bulk and compact densities and the L*, a* and b* color parameters of the GSPI decreased due to the ultrasound. Glutelin (61.1%) was the main protein fraction in GSPI. Results through Fourier transform infrared and fluorescence spectroscopy showed that ultrasound modified the secondary and tertiary protein structures of GSPI, which increased the surface hydrophobicity, molecular flexibility and in vitro digestibility of GSPI proteins by up to 114.8%, 57.3% and 12.5%, respectively. In addition, maximum reductions of 11.9% in particle size and 55.2% in turbidity of GSPI suspensions, as well as larger and more porous aggregates in GSPI lyophilized powders were observed by ultrasound impact. These structural and physicochemical changes had an improvement of up to 115.5% in solubility, 39.8% in oil absorption capacity, while the increases for emulsifying, foaming, gelling, flow and cohesion properties of GSPI were 87.4%, 74.2%, 40.0%, 44.4%, and 8.9%, respectively. The amelioration of the functional properties of GSPI by ultrasound could represent an alternative for its possible use as a food ingredient in industry.


Assuntos
Fabaceae , Proteínas de Plantas , Fenômenos Químicos , Proteínas de Plantas/química , Sementes/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA